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Part 0.  Outline. 
 

The goal of this talk is to provide an introduction to my joint papers with 
Harold Stark on zeta and L-functions of graph coverings [Advances in 
Math., 121 (1996) and 154 (2000)].  The motivation is to treat the graph 
zeta functions the same way as the number theory analogs.  This requires 
a discussion of the graph theoretic version of Galois theory which is to be 
found in the 2nd Advances paper.  Here we will not discuss the Galois 
theory but instead focus on examples and computation.  The following 
picture shows the tree of zetas with the zetas appearing as roots of the 
tree.  The branches indicate the parallel fields that benefit from these 
roots.  Here we consider only the 2 fields of algebraic number theory and 
graph theory.  In part 1, we discuss zeta and L-functions of algebraic 
number fields. More details for part 1 can be found in 

H. M. Stark, Galois theory, algebraic number theory & zeta 
functions, in From Number Theory to Physics (editors M.  
Waldschmidt et al), Springer-Verlag, 1992.  

In part 2, the graph theory analogs are to be found. There are actually 3 
kinds of graph zetas (vertex, edge and path). We will attempt to extol the 
computational advantages of the path zetas.  The path and edge zetas have 
many variables and do not appear to have number theory analogs as yet.   

Some History. 
The theory of zeta functions of algebraic number fields was developed by 
Riemann (mid 1800s) for the rational number field, then Dedekind, 
Dirichlet, Hecke, Takagi, and Artin (early 1900s).  Graph zeta functions 
appeared first from the point of view of p-adic groups in work of Ihara in 
the mid 1960s.  Then Serre realized the graph theory interpretation.  
Papers of Sunada, Hashimoto and Bass further developed the theory.  In 
particular, see Hashimoto, Adv. Stud. Pure Math., 15, Academic, 1989, 
pages 211-280.  More references can be found in the Advances papers 
mentioned above, as well as my book, Fourier Analysis on Finite Groups 
and Applications, Cambridge, 1999.
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Part I.  The Algebraic Number Theory Zoo of 
Zetas. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Riemann zeta,    for Re(s)>1, 
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•  Riemann extended to all complex s with pole at s=1. 
•  Functional equation relates value at s and 1-s 
•  Riemann hypothesis 
•  duality between primes and complex zeros of zeta 
•  prime number theorem 
•  See Davenport, Multiplicative Number Theory. 

 

Dedekind zeta of algebraic number field K=Q(θ) 
θ a root of a polynomial with coefficients in Q 
prime = prime ideal p in OK, ring of integers of K 

infinite product of  terms (1-Np-s)-1, 

where    Np = norm of p = #(OK/p) 
 
prime ideal theorem 
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SSSeeelllbbbeeerrrggg   zzzeeetttaaa   fffuuunnnccctttiiiooonnn   
 
 associated to a compact Riemannian manifold M=Γ\H 
 H = upper half plane with ds2=(dx2+dy2)y-2 

 
Γ=discrete subgroup of group of real fractional linear  

transformations 
 
primes = primitive closed geodesics C in M   

of length  ν(C) 
  (primitive means only go around once) 

 
Duality between spectrum of Laplacian ∆ on M &  

lengths closed geodesics in M  
 

 
 
 
 
 

Riemann hypothesis known to hold 
Prime geodesic theorem 
Z(s+1)/Z(s) is a closer analog of  ζ(s) 
We won’t say more about this zeta here. 
References: 
D. Hejhal, Duke Math. J., 43 (1976); A. Terras, Harmonic 
Analysis on Symmetric Spaces & Applics., I, Springer, 1985 
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    field              ring               prime ideal       finite field 
  

                          g=# of such p 
 

K=Q(√2)  OK=Z[√2]  p ⊃ pOK    OK/ p 
 
 
2              f=degree 
 
 
   F= Q    Z           pZ            Z/pZ 
 

3 CASES 
 
1) p inert:    f=2.      pOK = prime ideal,    2 ≠ x2 (mod p) 
 
2) p splits:     g=2.     pOK =  p p '   ,   2 ≡ x2 (mod p) 
 
3) p ramifies:  e=2. p= p 2,            p=2 
 
Gal(K/F)={1,-1},   
Frobenius automorphism = Legendre Symbol =  

1, in case 1
2

1,    in case 2
0,    in case 3

p

−
  =  
  


 

p odd implies p has 50% chance of being in Case 1  
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Zeta and L-Functions for Example 1 
 
Dedekind Zeta  

( )( ) 1
ss
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p
p  product over prime ideals in OK 

 
Riemann Zeta     
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−−= −∏Q    product over primes in Z 

Dirichlet L-Function  

( ) 1 2( , ) 1 ( ) ,  where  (p)=
p
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product over primes in Z 
Factorization       

 ( 2 )
( ) ( ) ( , )s s L sζ ζ χ= QQ  

Functional Equations:     ζK(s) related to ζK(1-s) 
 Hecke 
Values at 0:          ζ(0) = -1/2,      ζK(0) = -hR/w 
 
h = class number (measures how far OK is from having  

unique factorization) =1 for Z[√2] 
 
R = regulator (determinant of logs of units) 
  = log(1+√2) when K=Q(√2) 
 
w = number of roots of unity in K is  2,  when K=Q(√2) 
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Statistics of Prime Ideals and Zeros 

¯   from information on zeros of  ζK(s) obtain  
                  prime ideal theorem 

{ }K#  prime ideal in O | ,  as x
log

xN x
x

≤ → ∞∼p p  

¯   there are an infinite number of primes such that 2 1.
p

 
= 

 
 

¯   Dirichlet theorem: there are an infinite number of primes 
       p    in the progression   a, a+d, a+2d, a+3d, ....,  when  
       g.c.d.(a,d)=1. 
¯   Riemannn hypothesis still open: 

GRH or ERH: ζK(s)=0  implies Re(s)=1/2,   
               assuming s is not real. 

References: Lang or Neukirch, Algebraic Number Theory 

See the pulchritudinous primes website for some interesting 
pictures made using programs involving primes, including 
prime island. The site belongs to Adrian J. F. Leatherland and 
the address is:  

yoyo.cc.monash.edu.au/~bunyip/primes 
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K ⊃ F ⊃ Q     number fields with K/Q Galois 
 
OK ⊃ OF ⊃ Z  rings of integers 
 
P ⊃ p ⊃ pZ     prime ideals   (p  unramified ,    

i.e., P2 does not contain p) 
 

Frobenius Automorphism   
/

( / )
K F

Gal K Fσ  = ∈ 
 P  

( ) (mod ), forN
Kx x x Oσ ≡ ∈P

p P ,  
when p is unramified.  

  σP  determined by p  up to conjugation if P/p unramified 

  f (P/p)= order of σP  = [OK /P: OF/p]    

Artin L-Function for s∈C, π is a representation of Gal(K/F) 
1

/( , )" " 1 sK FL s Nπ π

−

−  
= −  

  
∏

p
p

P  

where “=” means we only give the formula for unramified 
primes p of F. Here we pick P a prime in OK  dividing p,  
 
 



 10 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
z Factorization 

d

      
irreducible
degree d

( ) L(s, )K s π

π

π

ζ π= ∏
 

 
z Chebotarev Density Theorem 

 ∀  σ  in Gal(K/F), ∃  ∞ -ly many prime ideals p of OF  

 such that ∃ P in OK dividing p with Frobenius  

/K F
σ

 
= 

 P  

z Artin Conjecture:  L(s,π) entire for non-trivial 
     irreducible rep π 
z Stark Conjectures:    π   not containing trivial rep 

 

    0
lim ( , ) ( ) ( )a

s
s L s Rπ π π

→
= Θ ∗  

= algebraic number * determinant of a×a matrix in linear 
forms with alg. coeffs. of logs of units of K and its conjugate 
fields /Q. 

 

References:    
Stark's paper in From Number Theory to Physics, edited by 
Waldschmidt et al 
Stark, Adv. in Math., Advances in Math., 17 (1975), 60-92 
Lang  or   Neukirch, Algebraic Number Theory 
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CCChhheeebbboootttaaarrreeevvv   DDDeeennnsssiiitttyyy   TTThhheeeooorrreeemmm   fffooorrr   KKK///QQQ    nnnooorrrmmmaaalll...   
For a set S of rational primes, define the analytic density of S  

( )
1

lim
1log 1

s

p S

s

p

s

−

∈

→ +

 
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 
 − 

∑
.  In the following proof, one needs to know that 

L(s,π) continues to s=1 with no pole or zero if π≠1, while 
L(s,1)=ζ(s)=Riemann zeta. 

PPPrrroooooofff...  Sum the logs of the Artin L-functions × conjugate of 
characters χπ  over all irreducible reps π of G.  As  s→ 1+, 
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by the orthogonality relations of the characters of the 
irreducible representations π of G. Here C(p) denotes the 
conjugacy class of the Frobenius auto of the prime of K above 
p.                                                                       Ì 

Theorem.  For every conjugacy class C in G=Gal(K/Q), 

the analytic density of the set of rational primes p such 
that C(p)=the conjugacy class of the Frobenius auto of 
a prime ideal P of K dividing p is |C|/|G|. 
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EEExxxaaammmpppllleee   222...   GGGaaallloooiiisss   EEExxxttteeennnsssiiiooonnn   ooofff   NNNooonnn---nnnooorrrmmmaaalll   CCCuuubbbiiiccc   
 

    field              ring               prime ideal       finite field 
                       g(P/p) = # of such P 

       K=F(e2πi/3)    OK             P    OK/P 
3 
 

      F= ( )3 2Q       OF                     p              OF/p 
2 
 
       Q              Z           pZ           Z/pZ 

f(P/p)=degree(OK/P:OF/p) 
More details are in Stark’s article in From Number Theory to Physics, 
edited by Waldschmidt et al 
 

SSSpppllliiittttttiiinnnggg   ooofff   RRRaaatttiiiooonnnaaalll   PPPrrriiimmmeeesss   iiinnn   OF       
   

Type 1.   pOF= p1 p2 p3 ,  with distinct  pi of degree 1 (p=31 is 

1st example), Frobenius of prime P above pi has order 1 

  density 1/6  by Chebotarev 
Type 2.   pOF= p1 p2 ,  with  p1  of degree 1,  p2  of degree 2 (p=5 

is 1st example), Frobenius of prime P above p i has order 2 

  density 1/2  by Chebotarev 
Type 3.   pOF= p,  with  p  of degree 3, (p=7 is 1st example), 

Frobenius of  P above p i has order 3 

  density 1/3  by Chebotarev 
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PPaarrtt  IIII..    TThhee  GGrraapphh  TThheeoorryy  ZZoooo  ooff  ZZeettaass  
References: 

• Harold M. Stark and Audrey Terras, Adv. in Math., Vol. 
121 (1996); Vol. 154 (2000) 

 
• K. Hashimoto, Internatl. J. Math., 1992, Vol.3. 

 

 

Definitions. 
Graph Y an unramified covering of Graph X  

means (assuming no loops or multiple edges) 
π:Y→X  is an onto graph map such that  

for every x∈X   &  for every y ∈ π-1(x), 
π maps the points z ∈ Y adjacent to y  

1-1, onto the points w ∈ X adjacent to x. 
 
Normal d-sheeted Covering means:  

∃ d graph isomorphisms 
g1 ,..., gd  mapping Y → Y 

such that  π gj (y) = π (y) for all y ∈ Y 
The Galois group G(Y/X) = { g1 ,..., gd }. 
 

Note:  We do not assume graphs are regular! 
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HHHooowww   tttooo   lllaaabbbeeelll   pppoooiiinnntttsss   ooonnn   YYY   
cccooovvveeerrriiinnnggg   XXX      wwwiiittthhh   GGGaaallloooiiisss   
gggrrrooouuuppp   GGG===GGGaaalll(((YYY///XXX)))   
   
   
   

    
             
   
        
       
       

 
 
 
 
(α,g) 
    
 
 
 
 
 
 
    

 
                

   
 

FFFiiirrrsssttt   pppiiiccckkk   aaa   ssspppaaannnnnniiinnnggg   
tttrrreeeeee   iiinnn   XXX   (((nnnooo   cccyyycccllleeesss,,,   
cccooonnnnnneeecccttteeeddd,,,   iiinnncccllluuudddeeesss   aaallllll   
vvveeerrrtttiiiccceeesss   ooofff   XXX)))...   
 

Y 

α 

X 

Second make n=|G| 
copies of the tree in X. 
These are the sheets of 
Y. Label the sheets 
with g∈G.  Then 
   g(sheet h)=sheet(gh) 
 g(α,h)=( α,gh) 

g(path from (α,h) to (β,j)) = 
path from (α,gh) to (β,gj) 
   

π  
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This is analogous to Example 1 in Part 1. 

 
 
 

 

CCCuuubbbeee   
   
   
   
                                    

cccooovvveeerrrsss   
   
   

TTTeeetttrrraaahhheeedddrrrooonnn 

 

 
 

Spanning Tree in X is red.  
Corresponding sheets of Y are also red 
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"PRIMES in GRAPHS” are 
equivalence classes of closed backtrackless 
tailless primitive paths 
 
DEFINITIONS 
 
backtrack             
 
equivalence class:  change starting point 
 
tail:    
 
    α     
 
 
 
Here α is the start of the path 
 
 
non-primitive:  go around path more than  

 once 
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a d 

c 

b 

a'' c' 

d'' b'' 

b' d' 

c" a′ D 
prime 
above 
C of 
length 6 

C prime of 
length 3 

Picture of Splitting of Prime 
which is inert; i.e., f=2, g=1, e=1 

1 prime cycle D above, & D is lift of C2. 
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CCCuuubbbeee   
   
   
   
                                    

   
cccooovvveeerrrsss   

   
   
   

TTTeeetttrrraaahhheeedddrrrooonnn 

 

 
 

d'' 

c" 

b'' 

a' 

b' d' 

a'' c' 

c 

b 

a d 

Picture of Splitting of Prime which splits 
completely; i.e., f=1, g=2, e=1 

2 primes cycles above 
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C a “prime” in X,   D a prime over C in Y 
 
 
 
where  ji-1 maps sheet i to sheet j 
 
 
     (α,j) 
       
         
          

       
 
 
     

 
 
 
 
        
 
 
 

X   α       C 

Frob(D) = /Y X
D

 
 
 

= ji-1  ∈ G=Gal(Y/X) 
 

°C  not necessarily  
     closed 

°( ) ( )C Cν ν=  
  ( D the prime 
     above C is  
         closed) 

Y 
 
 
 
    (α,i)  

°C  the unique lift  of C  
in Y starting at   

(α,i) 

π 

Exercise: Compute Frob(D) on 
preceding pages, G={1,g}. 
 

Answers. 
preceding page: 1, 
page before that: g 
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1) Replace (α,i) with (α,hi). Then 
 Frob(D) =  ji-1 is replaced with  hji-1h-1. 
     Conjugacy class of Frob(D) ∈ Gal(Y/X)  
     does not change. 
 
2) Varying  α  does not change Frob(D). 
 
3) Frob(D)j = Frob(D)j . 
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[ ]
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( , , / ) det 1 C
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L u Y X u

D
νρ ρ

−
  = −   
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∏

ρ = representation of G=Gal(Y/X), u∈C, |u| small 
 

[C]=equivalence class of primes of X 
ν(C)=length C,   D a prime in Y over C 


