$$
\begin{aligned}
& \text { Artin L-Functions } \\
& \text { of Graph Coverings }
\end{aligned}
$$

## Audrey Terras U.C.S.D.

Summer, 2002

## Part 0. Outline.

The goal of this talk is to provide an introduction to my joint papers with Harold Stark on zeta and L-functions of graph coverings [Advances in Math., 121 (1996) and 154 (2000)]. The motivation is to treat the graph zeta functions the same way as the number theory analogs. This requires a discussion of the graph theoretic version of Galois theory which is to be found in the $2^{\text {nd }}$ Advances paper. Here we will not discuss the Galois theory but instead focus on examples and computation. The following picture shows the tree of zetas with the zetas appearing as roots of the tree. The branches indicate the parallel fields that benefit from these roots. Here we consider only the 2 fields of algebraic number theory and graph theory. In part 1, we discuss zeta and L-functions of algebraic number fields. More details for part 1 can be found in
H. M. Stark, Galois theory, algebraic number theory \& zeta functions, in From Number Theory to Physics (editors M. Waldschmidt et al), Springer-Verlag, 1992.
In part 2, the graph theory analogs are to be found. There are actually 3 kinds of graph zetas (vertex, edge and path). We will attempt to extol the computational advantages of the path zetas. The path and edge zetas have many variables and do not appear to have number theory analogs as yet.

## Some History.

The theory of zeta functions of algebraic number fields was developed by Riemann (mid 1800s) for the rational number field, then Dedekind, Dirichlet, Hecke, Takagi, and Artin (early 1900s). Graph zeta functions appeared first from the point of view of p-adic groups in work of Ihara in the mid 1960s. Then Serre realized the graph theory interpretation. Papers of Sunada, Hashimoto and Bass further developed the theory. In particular, see Hashimoto, Adv. Stud. Pure Math., 15, Academic, 1989, pages 211-280. More references can be found in the Advances papers mentioned above, as well as my book, Fourier Analysis on Finite Groups and Applications, Cambridge, 1999.


## Part I. The Algebraic Number Theory Zoo of Zetas.

Riemann zeta, for $\operatorname{Re}(s)>1$,

$$
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}=\prod_{p=p r i m e}\left(1-p^{-s}\right)^{-1} .
$$

- Riemann extended to all complex s with pole at $\mathrm{s}=1$.
- Functional equation relates value at $s$ and 1-s
- Riemann hypothesis
- duality between primes and complex zeros of zeta
- prime number theorem
- See Davenport, Multiplicative Number Theory.

Dedekind zeta of algebraic number field $K=Q(\theta)$
$\theta$ a root of a polynomial with coefficients in $\mathbf{Q}$ prime $=$ prime ideal $p$ in $\mathbf{O}_{\mathrm{K}}$, ring of integers of $K$ infinite product of terms $\left(1-\mathrm{N}^{-s}\right)^{-1}$,
where $N p=$ norm of $p=\#\left(O_{K} / p\right)$

## SELBERG ZETA FUNCTION

associated to a compact Riemannian manifold $\mathbf{M}=\Gamma \backslash \mathbf{H}$
$H=$ upper half plane with $d s^{2}=\left(d x^{2}+d y^{2}\right) y^{-2}$
$\Gamma=$ discrete subgroup of group of real fractional linear transformations
primes $=$ primitive closed geodesics $\mathbf{C}$ in $\mathbf{M}$ of length $v(\mathbf{C})$
(primitive means only go around once)
Duality between spectrum of Laplacian $\Delta$ on $M \&$ lengths closed geodesics in $M$

$$
Z(s)=\prod_{[C]} \prod_{j \geq 0}\left(1-e^{-(s+j) v(C)}\right)
$$

Riemann hypothesis known to hold
Prime geodesic theorem
$\mathrm{Z}(\mathrm{s}+\mathbf{1}) / \mathrm{Z}(\mathrm{s})$ is a closer analog of $\zeta(\mathrm{s})$
We won't say more about this zeta here.
References:
D. Hejhal, Duke Math. J., 43 (1976); A. Terras, Harmonic Analysis on Symmetric Spaces \& Applics., I, Springer, 1985
field ring prime ideal finite field $\mathrm{g}=$ \# of such p
$K=Q(\sqrt{ } 2)$
$\mathrm{O}_{\mathrm{K}}=\mathrm{Z}[\sqrt{ } 2]$
$\mathrm{p} \supset \mathrm{pO}_{\mathrm{K}}$
$\mathrm{O}_{\mathrm{K}} / \mathrm{p}$
2
$\mathrm{F}=\mathrm{Q}$

$\mathrm{f}=$ degree

3 CASES

1) $p$ inert: $f=2 . \quad \mathrm{pO}_{\mathrm{K}}=$ prime ideal, $2 \neq \mathrm{x}^{2}(\bmod \mathrm{p})$
2) $\mathbf{p}$ splits: $\quad \mathrm{g}=2 . \quad \mathrm{pO}_{\mathrm{K}}=\mathrm{p} \mathrm{p}^{\prime}, \quad 2 \equiv \mathrm{x}^{2}(\bmod \mathrm{p})$
3) $p$ ramifies: $e=2 . p=p^{2}$, $\mathrm{p}=2$
$\operatorname{Gal}(\mathrm{K} / \mathrm{F})=\{1,-1\}$,
Frobenius automorphism = Legendre Symbol =

$$
\left(\frac{2}{p}\right)= \begin{cases}-1, & \text { in case } 1 \\ 1, & \text { in case } 2 \\ 0, & \text { in case } 3\end{cases}
$$

p odd implies p has $\mathbf{5 0 \%}$ chance of being in Case 1

## Zeta and L-Functions for Example 1

## Dedekind Zeta

$$
\zeta_{K}(s)=\prod_{\mathrm{p}}\left(1-N \mathrm{p}^{-s}\right)^{-s} \text { product over prime ideals in } \mathrm{O}_{\mathrm{K}}
$$

Riemann Zeta

$$
\zeta_{Q}(s)=\prod_{p}\left(1-N p^{-s}\right)^{-1} \quad \text { product over primes in } Z
$$

## Dirichlet L-Function

$$
\begin{gathered}
L(s, \chi)=\prod_{p}\left(1-\chi(p) p^{-s}\right)^{-1}, \text { where } \chi(\mathrm{p})=\left(\frac{2}{\mathrm{p}}\right) \\
\text { product over primes in } \mathrm{Z}
\end{gathered}
$$

Factorization

$$
\zeta_{\mathrm{Q}(\sqrt{2})}(s)=\zeta_{\mathrm{Q}}(s) L(s, \chi)
$$

Functional Equations: $\quad \zeta_{K}(s)$ related to $\zeta_{K}(1-s)$ Hecke
Values at 0: $\quad \zeta(0)=-1 / 2, \quad \zeta_{\mathrm{K}}(0)=-\mathrm{hR} / \mathrm{w}$
$h=$ class number (measures how far $\mathrm{O}_{\mathrm{K}}$ is from having unique factorization) $=1$ for $Z[\sqrt{ } 2]$
$R=$ regulator (determinant of logs of units)

$$
=\log (1+\sqrt{ } 2) \text { when } K=Q(\sqrt{ } 2)
$$

$w=$ number of roots of unity in $K$ is 2 , when $K=Q(\sqrt{ } 2)$

## Statistics of Prime Ideals and Zeros

* from information on zeros of $\zeta_{\mathrm{K}}(\mathrm{s})$ obtain
prime ideal theorem

$$
\#\left\{\mathrm{p} \text { prime ideal in } \mathrm{O}_{\mathrm{K}} \mid N \mathrm{p} \leq x\right\} \sim \frac{x}{\log x} \text {, as } \mathrm{x} \rightarrow \infty
$$

* there are an infinite number of primes such that $\left(\frac{2}{p}\right)=1$.
* Dirichlet theorem: there are an infinite number of primes p in the progression $a, a+d, a+2 d, a+3 d, \ldots$, when g.c.d. $(\mathrm{a}, \mathrm{d})=1$.

粦 Riemannn hypothesis still open:
GRH or ERH: $\zeta_{\mathrm{K}}(\mathrm{s})=0$ implies $\operatorname{Re}(\mathrm{s})=1 / 2$, assuming $s$ is not real.
References: Lang or Neukirch, Algebraic Number Theory
See the pulchritudinous primes website for some interesting pictures made using programs involving primes, including prime island. The site belongs to Adrian J. F. Leatherland and the address is:
yoyo.cc.monash.edu.au/~bunyip/primes

## Artin L-Functions

$\mathbb{K} \supset \mathbf{F} \supset \mathrm{Q} \quad$ number fields with $\mathrm{K} / \mathrm{Q}$ Galois
$\mathrm{O}_{\mathrm{K}} \supset \mathrm{O}_{\mathrm{F}} \supset \mathrm{Z}$ rings of integers
$P \supset \mathbf{p} \supset \mathrm{pZ}$ prime ideals ( $\mathbf{p}$ unramified, i.e., $\mathbf{P}^{2}$ does not contain $\mathbf{P}$ )

Frobenius Automorphism $\left(\frac{K / F}{\mathrm{P}}\right)=\sigma \in \operatorname{Gal}(K / F)$

$$
\sigma_{P}(x) \equiv x^{N \rho}(\bmod P), \text { for } x \in O_{K},
$$

when $p$ is unramified.
$\sigma_{P}$ determined by $\mathbf{p}$ up to conjugation if $P / p$ unramified $\mathrm{f}(\mathrm{P} / \mathbf{p})=$ order of $\sigma_{\mathrm{P}}=\left[\mathrm{O}_{\mathrm{K}} / \mathrm{P}: \mathrm{O}_{\mathrm{F}} / \mathrm{p}\right]$
Artin L-Function for $\mathrm{s} \in \mathrm{C}, \pi$ is a representation of $\operatorname{Gal}(\mathrm{K} / \mathrm{F})$

$$
L(s, \pi) "=" \prod_{p}\left(1-\pi\left(\frac{K / F}{P}\right) N p^{-s}\right)^{-1}
$$

where " $=$ " means we only give the formula for unramified primes $\mathbf{p}$ of $\mathbf{F}$. Here we pick $\mathbf{P}$ a prime in $\mathrm{O}_{\mathrm{K}}$ dividing $\mathbf{p}$,

## Applicaticins

## \& Factorization

$$
\zeta_{K}(s)=\prod_{\substack{\pi \\ \text { irreducible } \\ \text { degree } \mathrm{d}_{\pi}}} \mathrm{L}(\mathrm{~s}, \pi)^{\mathrm{d}_{\pi}}
$$

## \& Chebotarev Density Theorem

 $\forall \sigma$ in $\operatorname{Gal}(\mathbf{K} / \mathbf{F}), \exists \infty$-ly many prime ideals $\mathbf{p}$ of $\mathbf{O}_{\mathbf{F}}$ such that $\exists \mathbf{P}$ in $\mathbf{O}_{\mathrm{K}}$ dividing $\mathbf{P}$ with Frobenius$$
\left(\frac{K / F}{\mathrm{P}}\right)=\sigma
$$

If Artin Conjecture: $\mathbf{L}(\mathbf{s}, \pi)$ entire for non-trivial irreducible rep $\pi$
\& Stark Conjectures: $\pi$ not containing trivial rep

$$
\lim _{s \rightarrow 0} s^{a} L(s, \pi)=\Theta(\pi) * R(\pi)
$$

$=$ algebraic number * determinant of axa matrix in linear forms with alg. coeffs. of logs of units of K and its conjugate fields /Q.

## References:

Stark's paper in From Number Theory to Physics, edited by Waldschmidt et al
Stark, Adv. in Math., Advances in Math., 17 (1975), 60-92
Lang or Neukirch, Algebraic Number Theory

## Chebotarev Density Theorem for K/Q normal.

For a set $S$ of rational primes, define the analytic density of $S$ $\lim _{s \rightarrow+1}\left(\frac{\sum_{k s} s^{-s}}{\log 1 /(s-1)}\right)$. In the following proof, one needs to know that $\mathrm{L}(\mathrm{s}, \pi)$ continues to $\mathrm{s}=1$ with no pole or zero if $\pi \neq 1$, while $\mathrm{L}(\mathbf{s}, \mathbf{1})=\zeta(\mathrm{s})=$ Riemann zeta.

Theorem. For every conjugacy class $\mathbf{C}$ in $\mathbf{G}=\mathbf{G a l}(\mathrm{K} / \mathbb{Q})$, the analytic density of the set of rational primes $p$ such that $\mathbf{C}(\mathbf{p})=$ the conjugacy class of the Frobenius auto of a prime ideal $P$ of $K$ dividing $p$ is $|C| /|G|$.

Proof. Sum the logs of the Artin L-functions $\times$ conjugate of characters $\chi_{\pi}$ over all irreducible reps $\pi$ of G. As $s \rightarrow 1+$,

$$
\begin{aligned}
\log \frac{1}{s-1} & \sim \sum_{\pi} \log L(s, \pi) \overline{\chi_{\pi}(C)} \\
& \sim \sum_{\pi} \sum_{p} \chi_{\pi}(C(p)) p^{-s} \overline{\chi_{\pi}(C)} \\
& \sim \frac{|G|}{|C|} \sum_{\substack{p \\
C(p)=C}} p^{-s}
\end{aligned}
$$

by the orthogonality relations of the characters of the irreducible representations $\pi$ of G. Here C(p) denotes the conjugacy class of the Frobenius auto of the prime of $K$ above p.

Example 2. Galois Extension of Non-normal Cubic
field ring $\begin{gathered}\text { prime ideal } \\ g(P / p)=\# \text { of } \operatorname{such} P\end{gathered}$

$$
\mathrm{K}=\mathbb{F}\left(\mathrm{e}^{2 \pi i / 3}\right) \quad \mathrm{O}_{\mathrm{K}}
$$

3

$\mathbf{F}=\mathbf{Q}(\sqrt[3]{2})$
2

$\mathrm{O}_{\mathrm{F}}$


P
$\mathrm{O}_{\mathrm{K}} / \mathrm{P}$

p
pZ
Z/pZ
$f(P / p)=\operatorname{degree}\left(O_{K} / \mathbb{P}: O_{F} / p\right)$

More details are in Stark's article in From Number Theory to Physics, edited by Waldschmidt et al

## Splitting of Rational Primes in $\mathrm{O}_{\mathrm{F}}$

Type 1. $\mathrm{pO}_{\mathrm{F}}=\mathrm{p}_{1} \mathrm{p}_{2} \mathrm{p}_{3}$, with distinct $\mathrm{p}_{\mathrm{i}}$ of degree $1(\mathrm{p}=31$ is 1st example), Frobenius of prime $P$ above $p_{i}$ has order 1 density $1 / 6$ by Chebotarev
Type 2. $\mathrm{p} \mathrm{O}_{\mathrm{F}}=\mathrm{p}_{1} \mathrm{p}_{2}$, with $\mathrm{p}_{1}$ of degree $1, \mathrm{p}_{2}$ of degree $2(\mathrm{p}=5$ is 1st example), Frobenius of prime $P$ above $p_{i}$ has order 2 density $\mathbf{1 / 2}$ by Chebotarev
Type 3. $\mathrm{pO}_{\mathrm{F}}=\mathrm{p}$, with p of degree 3 , $(\mathrm{p}=7$ is 1 st example),
Frobenius of $P$ above $p_{i}$ has order 3
density $1 / 3$ by Chebotarev

## Part II. The Graph Theory Zoo of Zetas

References:

- Harold M. Stark and Audrey Terras, Adv. in Math., Vol. 121 (1996); Vol. 154 (2000)
- K. Hashimoto, Internatl. J. Math., 1992, Vol.3.

Definitions.
Graph $Y$ an unramified covering of Graph $X$ means (assuming no loops or multiple edges) $\pi: Y \rightarrow X$ is an onto graph map such that
for every $x \in X \quad \&$ for every $y \in \pi^{-1}(x)$, $\pi$ maps the points $\mathrm{z} \in \mathrm{Y}$ adjacent to y $1-1$, onto the points $w \in X$ adjacent to $x$.

Normal d-sheeted Covering means:
$\exists$ d graph isomorphisms
$\mathrm{g}_{1}, \ldots, \mathrm{~g}_{\mathrm{d}}$ mapping $\mathbf{Y} \rightarrow \mathbf{Y}$
such that $\pi g_{j}(\mathbf{y})=\pi(\mathbf{y})$ for all $\mathbf{y} \in \mathbf{Y}$
The Galois group $G(Y / X)=\left\{g_{1}, \ldots, g_{d}\right\}$.
Note: We do not assume graphs are regular!


How to label points on Y covering $X$ with Galois group $\mathbf{G}=\mathbf{G a l}(\mathbf{Y} / \mathbf{X})$

## Second make $\mathbf{n}=|\mathbf{G}|$

 copies of the tree in X . These are the sheets of Y. Label the sheets with $g \in \mathbf{G}$. Then $\mathbf{g}($ sheet $\mathbf{h})=$ sheet $(\mathrm{gh})$$$
\mathbf{g}(\alpha, \mathbf{h})=(\alpha, \mathbf{g h})
$$

$\mathbf{g}($ path from $(\alpha, \mathbf{h})$ to $(\beta, \mathbf{j}))=$ path from ( $\alpha, \mathrm{gh}$ ) to ( $\beta, \mathrm{gj}$ )

> First pick a spanning tree in $X$ (no cycles, connected, includes all vertices of $X$ ).

## Example 1. Quadratic Cover

## This is analogous to Example 1 in Part 1.

## Cube



## covers

Tetrahedron

Spanning Tree in X is red.
Corresponding sheets of Y are also red

# 'PRIMES in GRAPHS" are equivalence classes of closed backtrackless tailless primitive paths 

## DEFINITIONS

backtrack

equivalence class: change starting point
tail:


Here $\alpha$ is the start of the path
non-primitive: go around path more than once

## Example of Spllitting of Prinnes

 in Quadratic Cover, $f=2$D
prime
above
C of
length 6


C prime of length 3


Picture of Splitting of Prime
which is inert; i.e., $\mathbf{f}=\mathbf{2}, \mathrm{g}=1, \mathrm{e}=1$
1 prime cycle $D$ above, $\& D$ is lift of $C^{2}$.

Example of Spllitting of Primes lin Quadratic Cover, $9=2$

Cube

covers

a
d

Picture of Splitting of Prime which splits completely; i.e., $\mathrm{f}=1, \mathbf{g}=\mathbf{2}, \mathrm{e}=1$

2 primes cycles above

C a "prime" in $X$, D a prime over $\mathbf{C}$ in Y

$$
\operatorname{Frob}(\mathbf{D})=\left(\frac{Y / X}{D}\right)=\mathbf{j i}^{-\mathbf{1}} \in \mathbf{G}=\mathbf{G a l}(\mathbf{Y} / \mathbf{X})
$$

where $\mathbf{j i}^{-1}$ maps sheet $\mathbf{i}$ to sheet $\mathbf{j}$


Exercise: Compute Frob(D) on preceding pages, $\mathbf{G}=\{1, \mathrm{~g}\}$.

Answers.
preceding page: 1 ,
page before that: $g$


1) Replace $(\alpha, i)$ with $(\alpha, h i)$. Then $\operatorname{Frob}(D)=\mathbf{j i}^{-1}$ is replaced with $\mathrm{hji}^{-1} \mathbf{h}^{-1}$. Conjugacy class of $\operatorname{Frob}(D) \in \operatorname{Gal}(\mathbf{Y} / \mathbf{X})$ does not change.
2) Varying $\alpha$ does not change $\operatorname{Frob}(D)$.
3) $\operatorname{Frob}(D)^{j}=\operatorname{Frob}(D)^{j}$.

$\rho=\operatorname{representation~of~} \mathbf{G}=\mathbf{G a l}(\mathbf{Y} / \mathbf{X}), \mathbf{u} \in \mathbf{C},|\mathbf{u}|$ small

$$
L(u, \rho, Y / X)=\prod_{[C]} \operatorname{det}\left(1-\rho\left(\frac{Y / X}{D}\right) u^{v(C)}\right)^{-1}
$$

[C]=equivalence class of primes of $X$ $v(\mathbf{C})=$ length $\mathbf{C}, \mathbf{D}$ a prime in $\mathbf{Y}$ over $\mathbf{C}$

