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Part 0. QOutline.

The goal of thistalk isto provide an introduction to my joint papers with
Harold Stark on zeta and L-functions of graph coverings [ Advances in
Math., 121 (1996) and 154 (2000)]. The motivation isto treat the graph
zeta functions the same way as the number theory analogs. Thisrequires
adiscussion of the graph theoretic version of Galois theory which isto be
found in the 2™ Advances paper. Here we will not discuss the Galois
theory but instead focus on examples and computation. The following
picture shows the tree of zetas with the zetas appearing as roots of the
tree. The branchesindicate the parallel fields that benefit from these
roots. Here we consider only the 2 fields of algebraic number theory and
graph theory. Inpart 1, we discuss zeta and L-functions of algebraic
number fields. More details for part 1 can be found in

H. M. Stark, Galois theory, algebraic number theory & zeta

functions, in From Number Theory to Physics (editors M.

Waldschmidt et al), Springer-Verlag, 1992.
In part 2, the graph theory analogs are to be found. There are actually 3
kinds of graph zetas (vertex, edge and path). We will attempt to extol the
computational advantages of the path zetas. The path and edge zetas have
many variables and do not appear to have number theory analogs as yet.

Some History.

The theory of zeta functions of algebraic number fields was devel oped by
Riemann (mid 1800s) for the rational number field, then Dedekind,
Dirichlet, Hecke, Takagi, and Artin (early 1900s). Graph zeta functions
appeared first from the point of view of p-adic groupsin work of lharain
the mid 1960s. Then Serre realized the graph theory interpretation.
Papers of Sunada, Hashimoto and Bass further developed the theory. In
particular, see Hashimoto, Adv. Sud. Pure Math., 15, Academic, 1989,
pages 211-280. More references can be found in the Advances papers
mentioned above, as well as my book, Fourier Analysis on Finite Groups
and Applications, Cambridge, 1999.






Part |. The Algebraic Number Theory Zoo of
Zetas.

Riemann zeta, for Re(s)>1,

2()=8 4= 0O (- p)"

n=1 n p=prime

Riemann extended to all complex swith pole at s=1.
Functional equation relatesvalue at sand 1-s
Riemann hypothesis

duality between primes and complex zer os of zeta
prime number theorem

See Davenport, Multiplicative Number Theory.

Dedekind zeta of algebraic number field K=Q(q)
g aroot of a polynomial with coefficientsin Q
prime=primeideal pin Oy, ring of integers of K
infinite product of terms (1-Np™®)™,
where Np =norm of p = #Ox/p)

primeideal theorem



SELBERG ZETA FUNCTION

associated to a compact Riemannian manifold M=G\H
H = upper half plane with ds’=(dx*+dy?)y*

G=discrete subgroup of group of real fractional linear
transfor mations

primes = primitive closed geodesicsC in M
of length n(C)
(primitive means only go around once)

Duality between spectrum of LaplacianDon M &
lengths closed geodesicsin M

2(9=0 O(l' e (s+j)n(c>)
[C] j°0

Riemann hypothesis known to hold
Prime geodesic theorem

Z(st+1)/Z(s) isa closer analog of z(s)
Wewon’t say mor e about this zeta here.

References:
D. Hghal, Duke Math. J., 43 (1976); A. Terras, Harmonic

Analysis on Symmetric Spaces & Applics,, I, Springer, 1985



Bample 1. Quadratic Extension

field rng primeidea  finitefield
g=# of such p
K=Q((®) Ox=Z[(?] p E pO« O/ p
2 f=degree
F=Q Z pZ ZIpZ
3 CASES

1) pinert: f=2. pOx =primeideal, 2! x*(mod p)
2) psplitss g=2. pOk=pp' , 2° x*(mod p)
3) p ramifies. e=2. p=p? p=2

Ga(K/F)={1,-1},
Frobenius automorphism = Legendre Symbol =

P i-lincasel
g—gz%l in case 2

cPo ¥O,inc&£3

p odd implies p has 50% chance of beingin Case 1



Zeta and L-Functionsfor Example 1

Dedekind Zeta
2 (9) = Cp)(l Np*) product over prime idealsin O

Riemann Zeta
2,(9=0O(1- Np*)"  product over primesin Z
p
Dirichlet L-Function

Lisc)=0 (1- c(p) p'S)'l, where c(p):g%g
product over primesin Z

Factorization
zQ(ﬁ)(s) =Z,(s)L(s,c)

Functional Equations:  zk(s) related to zk(1-9)
Hecke

Valuesat O: z(0) =-1/2, zk(0)=-hR/w

h = class number (measures how far O Isfrom having
unique factorization) =1 for Z[(?]

R =regulator (determinant of logs of units)
= log(1+Q2) when K=Q((®)

w = number of roots of unity inK is 2, when K=Q((®)



Statistics of Prime ldeals and Zer os
sk from information on zeros of zy(s) obtain

primeideal theorem

#{p primeideal inO, |[Np £ X} ~

, aSX® ¥
log x

% thereare an infinite number of primes such that g%‘?:l.

(%]
3% Dirichlet theorem: there are an infinite number of primes

p intheprogresson a, atd, at+2d, at+3d, ...., when
g.c.d.(a,d)=1.

%k Riemannn hypothesis still open:
GRH or ERH: zk(9)=0 implies Re(s)=1/2,
assuming sisnot redl.
References. Lang or Neukirch, Algebraic Number Theory

See the pulchritudinous primes website for some interesting
pictures made using programs involving primes, including

prime island. The ste belongsto Adrian J. F. Leatherland and
the addressis:

yoyo.cc.monash.edu.au/~bunyip/primes



Artm L-Functions

EFEQ numberfieldswith K/Q Galois
E Or E Z rings of integers

EpEpZ primeideds (p unramified,
l.e., does not contain p)

oK IF 5

Frobenius Automor phism P 5

s.(x)° x""(modF ), for xI O
when p is unramified.
S, determined by p up to conjugation if - /p unramified
f(FP/p)=orderof s. =][ : O¢/p]
Artin L-Function for d C, p is arepresentation of Gal(K/F)

1

s1 Gal(K/F)

" ||~ % a(/FO -S(.j
L(sp)" = Ogl-pg—+Np +
p € 7] 17/}

where “=" means we only give the formula for unramified
primes p of F. Herewe pick > aprimein dividing p,




=

A pplications

¥ Factorization
2 (s)= O L(sp)*

P
irreducible
degree d,

38 Chebotarev Density Theorem -

s inGal(K/F),$ ¥ -ly many primeidealsp of Of
such that $ P in O dividing p with Frobenius

ad(/Fo
=S
EP g
& Artin Conjecture: L(s,p) entirefor non-trivial

iIrreduciblerep p
#6 Stark Conjectures: p not containing trivial rep

) |ims’L(sp)=Qp)* RP)

= algebraic number * determinant of a amatrix in linear
forms with alg. coeffs. of logs of units of K and its conjugate

fields/Q.

References:

Stark's paper in From Number Theory to Physics, edited by
Waldschmidt et d

Stark, Adv. in Math., Advances in Math., 17 (1975), 60-92
Lang or Neukirch, Algebraic Number Theory
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Chebotarev Density Theorem for K/Q normal.
For aset Sof rational primes, definethe analytic density of S

ae ap C')
Ilm

o1+ gIog}/S )2

L (s,p) contlnuesto s=1with nopoleor zeroif pt 1, while
L (s,1)=z(s)=Riemann zeta.

. In thefollowing proof, one needs to know that

Theorem. For every conjugacy class C in G=Gal(K/Q),

the analytic density of the set of rational primesp such
that C(p)=the conjugacy class of the Frobenius auto of
aprimeideal P of K dividing p is |C//|G].

Proof. Sum thelogsof the Artin L-functions” conjugate of
charactersc, over all irreduciblerepsp of G. As s® 1+,

1 0
log— ~Qq logL(s,p)c,(C)
s-1

~aac,(Cpp-cc,(C)

PP

SIS
IC|

C(p)=C

by the orthogonality relations of the char acters of the
irreducible representationsp of G. Here C(p) denotesthe
conjugacy class of the Frobenius auto of the prime of K above

\\f
p.
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Example 2. Galois Extension of Non-normal Cubic

field ring primeideal finitefield
g(FP/p) =#of such P
K=F(E®"?) O P O«/P
> | | I
F=Q (E/E) Or P Or/p
> | | | |
Q Z pZ ZIpZ

f(F /p)=degree(Ox/FP:0¢/p)
Moredetailsarein Stark’sarticlein From Number Theory to Physics,
edited by Waldschmidt et al

Splitting of Rational Primesin O¢
Typel pOg= p;p2ps, withdistinct P; of degreel (p=31is

1st example), Frobeniusof prime - above p; hasorder 1

density 1/6 by Chebotarev
Type2. pOg= p;p2, With p; of degreel, P, of degree2 (p=5

is 1st example), Frobeniusof prime - above p; hasorder 2

density 1/2 by Chebotarev
Type3. pOg= p, with p of degree3, (p=7 is1st example),

Frobeniusof - abovep;hasorder 3
density 1/3 by Chebotarev



Part Il. The Graph Theory Zoo of Zetas

References:
- Harold M. Stark and Audrey Terras, Adv. in Math., Vol.

121 (1996): Vol. 154 (2000)

- K. Hashimoto, Internatl. J. Math., 1992, Vol.3.

Definitions.
Graph Y an unramified covering of Graph X
means (assuming no loops or multiple edges)
P:Y® X isan onto graph map such that
for every xI X & for everyyl p™(x),
p mapsthe pointszl Y adjacent toy
1-1, onto the pointsw 1 X adjacent to x.

Normal d-sheeted Covering means:
$ d graph isomor phisms
Jd1,..,Jq Mmapping¥ ® Y
suchthat pgi(y)=p(y)foralyl Y
The Galoisgroup G(Y/X) ={d1,..., 94}

Note. Wedo not assume graphsareregular!
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How to label pointson Y
covering X with Galois
group G=Gal(Y/X)

Second make n=|G|
copiesof thetreein X.
These arethe sheets of
Y. Label the sheets
with gl G. Then

g(sheet h)=sheet(gh)

g(a,h)=(a,gh)

g(path from (a,h) to (b)) =
path from (a,gh) to (b,gj)

First pick a spanning
treein X (no cycles,
connected, includes all
vertices of X).




Example 1. Quadratic Cover

Thisisanalogousto Example 1in Part 1.

Q\ /O
O o
Cube
/ ] .\
O O
covers
@
Tetrahedron
@.

LN\

Spanning Treein X isred.
Corresponding sheets of Y are also red
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"PRIMESIn GRAPHS" are

eguivalence classes of closed backtrackless
tailless primitive paths

DEFINITIONS

backtrack Qe—0—
equivalence class. change starting point
tail: o—

et \
R‘\o/.

Herea isthe start of the path

non-primitive: go around path morethan
once

16



Example of Splitting of Primes
in Quadratic Cover, f=2

b" o d"
D \ /
prime  S—
above 1
C of
length 6 ® ®
/ d' b'\
' o
a C
C
C prime of ®
length 3
O

Picture of Splitting of Prime
whichisinert; i.e, f=2, g=1, e=1
1 prime cycle D above, & D islift of C.



Example of Splitting of Primes
imn Quadratic Cover, g=2

covers

Tetrahedron

Picture of Splitting of Prime which splits
completely; i.e., f=1, g=2, e=1
2 primes cycles above
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FROBENIUS AUTOMORPHINM

Ca“prime’ in X, Daprimeover CinY
Frob(D) = &5-2=ji* T G=Gal(Y/X)

where ji mapssheet i to sheet |

~

(@) C theuniquelift of C
InY starting at

(@)

C not necessarily
: closed
(a.i) n((N:):n (C)

p (D theprime

aboveC is
X a /—5 C

closed)

Exercise: Compute Frob(D) on -
precedlng pages’ G:{l’g} preceding page: 1,

page before that: g
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Properties of Frobenius

1) Replace (a,i) with (a,hi). Then
Frob(D) = ji"isreplaced with hji*h™.
Conjugacy class of Frob(D) I Gal(Y/X)
does not change.

2) Varying a doesnot change Frob(D).

3) Frob(D)' = Frob(DY .

Artin L=Function

r =representation of G=Gal(Y/X), ul C, [u| small

aé//Xoun(C)O
& D g 4]

[C]=equivalence class of primes of X
Nn(C)=length C, DaprimeinY over C

L(u,r ,Y/X):C)detg[

[C]
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